Minneapolis Community Environmental Advisory Commission

Darcy Solutions Overview

September 20, 2022

Heating and cooling is the next sector for carbon reduction

Sources: EIA, Monthly Energy Review, April 2019

- Geothermal represents the most energy efficient and environmentally friendly heating and cooling technology
- DOE recommends geothermal displace 50% of conventional HVAC
- Darcy makes geothermal viable for a large segment of the market for the first time

Developing Darcy's innovative heating & cooling solution

Our Team

Brian Larson Co-founder & CEO

Dr. Jimmy Randolph, PhD, Co-Inventor

Scott Alexander, Co-Inventor, Chief Geologist

Dr. Suzanne Magdalene, PhD, Senior Geologist

Alex Martell, Business Ops & Regulatory

Andrew Steiner, Chief Development Officer

We founded Darcy to make a meaningful impact on improving the health of our communities and planet

Ryan Martin-Wagar, Technology

Our Solution

- Darcy's ground water enabled system offers a fundamentally new approach, dramatically increasing per-well efficiency to drive down cost and space requirements
- Darcy delivers the most sustainable, energy-efficient heating and cooling system available while protecting our natural resources
- Particularly well-suited for dense, urban applications for commercial and multi-family residential
- Enables an energy transition to include communities too often left behind

With the highest efficiency, Darcy offers the greatest reduction in emissions

Heating Emissions Comparison

Note: Xcel MW - 12% natgas, 30% coal, 29% nuclear and 29% renewables

Sources: EIA, energysavers.gov, Energy.gov

With the greatest operating efficiency and lowest emissions profile, Darcy enables building owners to achieve:

- The most stringent energy efficiency regulations, such as SB2030
- Sustainability goals such as Net Zero Emissions
- Fully electric, non-hydrocarbon heating & cooling

While supporting utilities' efforts of strategic electrification

Darcy addresses the two biggest hurdles faced by traditional geothermal systems

Features	Conventional HVAC	Traditional Geothermal	Air Source Heat Pumps	DARCY ()
Installation cost	✓	X	✓	✓
Operating cost		✓		✓
Zero emissions onsite	X	✓	✓	✓
Energy efficient		✓		✓
Long system life		✓		✓
Small footprint	✓	X	✓	✓
Cold climate heat	✓	✓	X	✓
Heating or cooling only				✓

Darcy supports a Just Transition

- Due to pollution and climate change, low-income residents and people of color face disproportionate health risks, such as early-onset asthma and cardiovascular disease
- As natural gas utilities lose volume due to the electrification of everything, these same communities could be left with the high fixed costs of these gas networks

image sourced from Ben & Jerry's®

- These disproportionately affected communities should be able to transition to clean and healthy buildings first, not last
- Darcy enables this transition due to our ability to construct systems with zero onsite emissions, with the highest efficiency, in the urban environment

Darcy makes geothermal heating and cooling viable for building types that are largely unable to utilize geo today

Darcy generates 50+ tons of heating/cooling capacity per well vs. 1-2 tons per borehole for traditional geothermal

Benefits:

- Expands the viability of geothermal, especially for building sites that are footprint constrained
- Reduces upfront installation and equipment sizing
- Minimizes site disruption and installation time
- Remains accessible for maintenance
- Accelerates project returns on investment

Darcy places its heat exchanger into a water well

The **Darcy system** is a closed loop system

- The well is a compliant water-supply well
- The building loop fluid is potable water
- Ground water is drawn from and returned to the same source; it remains in the ground
- Unlike commonly used chillers, Darcy utilizes essentially zero water
- The system is constructed with materials and equipment that are recognized as safe and currently used in domestic wells

Applications & Markets

- Commercial, multi-family, and industrial
- Community and district residential systems
- Project sizes: 50 tons 1,000+ tons
- Project types: new construction and retrofit
- HVAC system: new or integrate into existing
- Site characteristics: urban to rural

Thermal Networks – District Systems

- NY state passed a bill in July enabling the traditional gas utilities to transition their business model to thermal networks for delivering climate-friendly and clean heating and cooling as an alternative to delivering natural gas or heating oil
- Through legislation, Minnesota could offer the same transition to our utilities operating in dense environments
- Pilot programs could soon demonstrate the potential value of district geothermal systems in Minneapolis neighborhoods

Case Study

Case study: St. Paul mixed office and warehouse

Traditional geothermal

- Would tear up the entire parking lot to drill 75+ boreholes
- Maintenance and repairs require extensive parking lot disruption
- Replacing the lot is disruptive, costly, and environmentally harmful

Darcy reduces footprint and disruption

- Impacts limited to the edge of the parking lot
- System is easily accessible for maintenance and capacity expansion
- Site and business disruption are minimized

Case study: St. Paul mixed office and warehouse

Induction Displacement Chilled Beams

78% reduction in cooling-related energy use and emissions from code-standard system...almost free cooling!

Roof Reutilization

- Rooftop air conditioning and air handler units were reduced from 28 to just 4 – freeing up roof space for future solar installation
- Currently developing the design for thermal solar installation

Darcy Delivers

- A practical and financially attractive option for heating and cooling that is a breakthrough for low-carbon systems in the urban environment
- An enabling solution to support a *just transition*
- The most efficient system for heating and cooling both upfront and long-term
- Safe and essentially zero utilization of groundwater

